Skip to main content
The DataLinks Python SDK is designed to simplify data ingestion, normalization, linking, and querying processes with DataLinks. It integrates with the DataLinks API to provide a seamless development experience for managing data workflows, including entity resolution and inference steps, with robust configuration options. This SDK is designed to accelerate the development of applications with DataLinks by wrapping the API integrations with a Pythonic interface, supporting flexible chaining of inference and validation steps.

Features

  • Ingestion API: Easily ingest data into namespaces with built-in batching and retry mechanisms.
  • Inference Workflow Management: Define custom chains of inference and validation steps.
  • Entity Resolution: Match entities using configurable exact or geo-based matching methods.
  • Namespace Management: Create and manage namespaces with privacy options.
  • Data Querying: Query data with options to include/exclude metadata.
  • Custom Loaders: Load custom data formats like JSON into defined workflows.
  • CLI Tool: Standardized command-line interface for managing ingestion pipelines quickly.

Installation

To install the SDK, simply use pip:
pip install datalinks
If you want to install the package in an editable development mode:
  1. Clone the repository from your version-control system.
  2. Create a virtual environment with your tool/distro of choice.
  3. Run the following:
pip install -e .

Quick Start

Here’s how to get started with the DataLinks SDK:
  1. Configuration Ensure you have your required environment variables set up for the DataLinks API:
    • HOST
    • DL_API_KEY
    • NAMESPACE
    • OBJECT_NAME (optional)
    Alternatively, you can use a .env file in the root of your project for configuration.
  2. Basic Example Import the SDK and initialize the configuration:
from datalinks.api import DataLinksAPI, DLConfig

# Initialize configuration
config = DLConfig.from_env()

# Instantiate API client
client = DataLinksAPI(config=config)

# Query data
data = client.query_data(query="*", include_metadata=False)
print(data)
  1. CLI Usage The SDK also provides a built-in CLI that can be extended:
datalinks-client [-h] --verbose <input-folder>

Components

1. DLConfig

DLConfig reads configurations (e.g., API keys) via environment variables or .env files. This enables dynamic adaptation across deployment environments.

2. DataLinksAPI

DataLinksAPI handles interactions with the API. You can:
  • Ingest data.
  • Query or retrieve data with complex parameters.
  • Manage namespaces.

3. Inference Workflow

Use a chain of inference and validation steps defined through classes like ProcessUnstructured, Normalize, and Validate to automate data preparation workflows.
from datalinks.pipeline import Pipeline, ProcessUnstructured, Normalize, Validate, ValidateModes

# Define an inference pipeline
inference_steps = Pipeline(
   ProcessUnstructured(derive_from="source_field", helper_prompt="This extracts tables."),
   Normalize(target_cols={"email": "email_address"}, mode="all-in-one"),
   Validate(mode=ValidateModes.FIELDS, columns=["email", "phone"]),
)

4. Entity Resolution

Supports multiple resolution strategies, configurable via MatchTypeConfig:
from datalinks.links import MatchTypeConfig, ExactMatch

entity_resolution = MatchTypeConfig(
   # parameters are optional
    exact_match=ExactMatch(minVariation=0.2, minDistinct=0.3)
)

5. Loaders

Abstract base loaders (e.g., JSONLoader) allow seamless data ingestion from custom file formats like .json.

6. Parametrize LLms

You can choose the model and provider to be used in inference steps (eg.: ProcessUnstructured, Normalize, Validate).

from datalinks.pipeline import Pipeline, ProcessUnstructured

steps = Pipeline(
        ProcessUnstructured(
            derive_from="text",
            helper_prompt="If you find a numeric field use only the value and omit the rest.",
            model="gpt-4.1-nano-2025-04-14",
            provider="openai"
        )
    )

Run Unit Tests

Run tests to verify your implementation:
tox

License

DataLinks Python SDK is licensed under the MIT License. See the LICENSE file for more details.

Support

For questions or support, please contact us.
I